вид:
2
2
.
13
2
2
.
3
2
.
13
2
.
3
2
.
1
23
.
1
1
1
r
r
r
r
r
r
y
y
y
y
.
Каноническая корреляция
Множественная корреляция, позволяющая оценивать тесноту связи между множеством
независимых переменных и одной из множества зависимых переменных, представляет собой частный
случай более общего метода канонической корреляции. Этот метод был разраб. в 1935 г. Гарольдом
Хотеллингом. Коэффициенты канонической корреляции (R
Ci
)
определяются на двух множествах
переменных. Чтобы показать связи, существующие между этими двумя множествами непрерывных
переменных, вычисляется неск. канонических коэффициентов; их число определяется по числу
переменных в меньшем множестве (если число переменных в них не одинаково). При канонической
корреляции в обоих множествах (по отдельности) отыскиваются линейные комбинации входящих в них
переменных, позволяющие определить (новые) координатные оси в пространстве каждого множества.
Каждая такая линейная комбинация наз. канонической величиной (или канонической переменной).
Канонические переменные отличаются друг от друга весами, к-рые они придают первичным
переменным в соотв. множестве. Каноническая корреляция это корреляция произведения моментов
между парой канонических переменных, по одной из каждого множества. Т. о., каждый коэффициент
канонической корреляции является мерой тесноты линейной связи между двумя координатными осями
соотв. множеств переменных. Каноническая корреляция яв-ся методом многомерного статистического
анализа.
См. также Корреляция и регрессия, Статистика в психологии
П. Ф. Меренда
Корреляция и регрессия (correlation and regression)
Рассмотрение К. и Р. строится вокруг следующих осн. вопросов: а) существует ли между
переменными X и Y такого рода связь, что по известным нам значениям X мы могли бы, по крайней
мере с разумной степенью точности, предсказать значения Y? б) Какова сила (или теснота) этой связи
между переменными X и Y? в) При условии существования такой связи между X и Y, каково
оптимальное правило (или, выражаясь математически, уравнение) для предсказания Y по X и насколько
хорошо оно обосновано? Когда мы занимаемся оценкой тесноты или степени связи (строго говоря,
степени линейной связи), мы имеем дело с К. Термин «Р.» относится к вопросам, связанным с
предсказанием значений одной переменной по значениям др.
Коэффициент корреляции
Коэффициент К. произведения моментов Пирсона (r), чаще называемый просто
коэффициентом К., яв-ся показателем силы линейной связи между двумя переменными и изменяется
в пределах от +1 до -1. Нулевое значение коэффициента К. Пирсона указывает на отсутствие линейной
связи между X и Y; положительные значения этого коэффициента свидетельствуют о существовании
тенденции увеличения Y по мере увеличения X, тогда как его отрицательные значения свидетельствуют
о существовании противоположной тенденции: уменьшения Y по мере увеличения X.
Прямолинейная К. между X и Y имела бы место в том случае, если бы значения Y можно было
безошибочно предсказать по значениям X, используя уравнение прогноза вида Y = аХ + b, где а и b
соответствующим образом подобранные константы. При а > 0 наблюдалась бы полная положительная
К. (+1), а при а < 0 полная отрицательная корреляция (-1). Уравнение вида Y = аХ + b называется
линейным уравнением, поскольку при построении графика функции Y от X все точки (X, Y),
удовлетворяющие данному уравнению, ложатся на прямую линию.
Коэффициент К. Пирсона это показатель степени линейной связи, а не связи вообще. Напр., он
может указывать на полное отсутствие К. (r = 0) между двумя переменными, связанными
функциональной нелинейной зависимостью. Из-за этих ограничений коэффициент К. Пирсона имеет
тенденцию недооценивать степень связи между переменными.
Несмотря на то что существует неск. различных, хотя и эквивалентных формул для вычисления
коэффициента К. Пирсона, наиболее известной расчетной формулой яв-ся следующая:
]
)2
(
][
)
(
[N
)
)(
(
2
2
2
Y
Y
N
X
X
Y
X
XY
N
r
,
где N - число парных оценок по X и Y.
|